Incidences between Points and Lines in Three Dimensions

نویسندگان

  • Micha Sharir
  • Noam Solomon
چکیده

We give a fairly elementary and simple proof that shows that the number of incidences between m points and n lines in R, so that no plane contains more than s lines, is O (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On lines, joints, and incidences in three dimensions

We extend (and somewhat simplify) the algebraic proof technique of Guth and Katz [7], to obtain several sharp bounds on the number of incidences between lines and points in three dimensions. Specifically, we show: (i) The maximum possible number of incidences between n lines in R and m of their joints (points incident to at least three non-coplanar lines) is Θ(mn) for m ≥ n, and Θ(mn+m+n) for m...

متن کامل

Generalizations of the Szemerédi-Trotter Theorem

In this paper, we generalize the Szemerédi-Trotter theorem, a fundamental result of incidence geometry in the plane, to flags in higher dimensions. In particular, we employ a stronger version of the polynomial cell decomposition technique, which has recently shown to be a powerful tool, to generalize the Szemerédi-Trotter Theorem to an upper bound for the number of incidences of complete flags ...

متن کامل

Incidences Between Points and Lines on Two- and Three-Dimensional Varieties

Let P be a set of m points and L a set of n lines in R, such that the points of P lieon an algebraic three-dimensional surface of degree D that does not contain hyperplaneor quadric components, and no 2-flat contains more than s lines of L. We show thatthe number of incidences between P and L is

متن کامل

Homotheties and incidences

We consider problems involving rich homotheties in a set S of n points in the plane (that is, homotheties that map many points of S to other points of S). By reducing these problems to incidence problems involving points and lines in R, we are able to obtain refined and new bounds for the number of rich homotheties, and for the number of distinct equivalence classes, under homotheties, of k-ele...

متن کامل

The Szemerédi-Trotter theorem in the complex plane

This paper generalizes of the Szemerédi-Trotter theorem to the complex plane. Szemerédi and Trotter proved that the number of point-line incidences of n points and e lines in the real Euclidean plane is O(n2/3e2/3 + n + e). This bound is tight. Although several short proofs were found to this theorem [14, 12], and many multidimensional generalizations were given, no tight bound has been known s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015